其他
支持频繁更新、即席查询:ClickHouse在爱奇艺视频生产的应用
具体来说有以下几点:
1)实时性的要求,需要实时的解决方案。2)生产数据更新频繁,OLAP 需支持更新。3)生产需要大表 Join 方案。码流属性(亿级,百G)和节目属性(亿级,百G)经常放在一起做分析。 此外,爱奇艺视频生产数据还有一个特点,数据来源于OLTP 数据中台,其数据持久化在 Mongo,消息变动写入 Kafka, Kafka中:curData 是当前更新数据,oriData是历史为变动数据,这样的结构化数据为配置化开发提供了可能。
爱奇艺视频生产团队负责爱奇艺的视频生产,涵盖“素材、成片、运营流、图片”各个方面,并围绕生产进行了中台化建设、监控建设、数据报表建设等,旨在为视频生产提效,节省编辑精力,更快更好的产出优质视频。
针对以上痛点,爱奇艺视频生产团队进行了一系列努力。本文将详细叙述ClickHouse在爱奇艺视频生产实时数仓的应用:包括业务数据是如何通过 Spark / Spark Streaming 计算引擎处理,并将 HBase 作为维表数据存储,进行实时Join,最终写入ClickHouse,实现即席查询的。
最终的建设成果也比较显著,原本报表开发周期由天级缩短到小时级,满足了频繁更新的实时、离线可 Join 的报表需求。
01
随着各种大数据技术蓬勃发展,爱奇艺视频生产的数据业务经历了两个阶段。
早期阶段一:团队基于公司内部 BabelX 离线数据同步工具,引入 Hive 技术,来做报表开发。
早期阶段二:随着生产数据增多,Mysql 提供的可视化查询性能遇到瓶颈,且实效性要求提高,数据报表进入了第二阶段,引进 ClickHouse 进行实时报表开发。
在引进clickHouse的过程中,我们也研究了业界如druid、kudu等其他方案,结论是:Druid、kudu在用户视频数少,时间跨度大的情况下,性能表现还不错;当用户视频数超过1千万后,Druid会受聚合影响,速度大幅度降低,甚至会出现超时的情况。最终我们选择了clickHouse,通过它的引擎的选择,我们还支持了频繁的数据更新。
在此基础上,我们完善系统,最终形成了如下的新的架构体系。
02
Spark 是用于大规模数据处理的统一分析引擎,高效的支撑更多计算模式,包括交互式查询和流处理。一个主要特点是能够在内存中进行计算,即使依赖磁盘进行复杂的运算,Spark依然比MapReduce更加高效。Spark Streaming 是核心 Spark API 的扩展,可实现实时数据流的可伸缩,高吞吐量,容错流处理。其基于微批,和其他基于“一次处理一条记录” 架构的系统相比, 它的延迟会相对高一些,但是吞吐量也会有一定优势。而批量插入 ClickHouse,又是 ClickHouse 所推崇的。
结合 Spark/Spark Streaming 与 ClickHouse 的特性,这一方案优势也就显而易见了:
ClickHouse 支持更新且速度极快;Spark Streaming 微批,更适合写入clickHouse。
具体建设过程主要分为三个部分。
离线数据加工
实时数据加工
Join需求
1. 实时导入 ClickHouse,维表数据必须早于事实表产生。2. 增量离线同步或者实时同步 ClickHouse 时,需保证 维表数据基本不变 或者 维表数据变化后,实时、离线增量数据也会发生变化。3. 否则维表变化不会在 ClickHouse 输出表中体现。
看到这里,整体架构已经很清晰了。那么如何选择 ClickHouse引擎来支持频繁更新呢?
03
ReplacingMergeTree(覆盖更新)以 id 作为主键,会删除相同的重复项。不保证没有重复的数据出现。
VersionedCollapsingMergeTree(折叠更新)在数据块合并算法中添加了折叠行逻辑。
针对离线数据,有两种选择方案。
方案一是用 ReplacingMergeTree 引擎的增量同步方案:先用 Spark 计算引擎将 Mongo 数据例行同步到 Hive,再用 Spark 计算引擎消费 Hive 增量数据写入 ClickHouse。其优点是增量同步,压力小。缺点是 Join 时,增量离线同步,需保证 维表数据基本不变 或者 维表数据变化后,实时表数据也会发生变化。否则维表变化不会再事实表中体现。
方案二是用 MergeTree 引擎的全量同步方案:先用 Spark 计算引擎将 Mongo 数据定时同步到 Hive,然后Truncate ClickHouse 表,最后使用Spark 消费 Hive 近 N 天数据写入 ClickHouse。其优点是可解决方案一 Join 时问题。缺点是全量同步,仅保存近 N 天数据,压力大。
针对实时数据,也有两种选择方案。
方案二是用 ReplacingMergeTree 引擎的增量同步方案:先用 Spark 计算引擎将 Mongo 存量数据一次性同步到 ClickHouse,再重置 Kafka 消费位置,将实时数据同步到ClickHouse ReplacingMergeTree。其优点是相比与 VersionedCollapsingMergeTree 更简单,且离线和实时数据连接点,不存在异常。缺点是不保证没有重复的数据出现。
接下来介绍下数据的准确性保证。
04
首先是离线重跑数据时,如果 ClickHouse 是 Merge 引擎,重跑时将 Drop 重跑分区。然后是离线全量重跑近 N 天数据,执行 Spark 任务前会先 Truncate 表。
而实时数据的数据准确性保证,首先是 在 Spark 消费 Kafka 时,offset不自动提交,待本次微批数据的所有业务逻辑均处理完成后,再手动提交 offset,以此达到最少一次消费的目的,保证不会丢数据,而 ClickHouse ReplacingMergeTree 引擎写入是幂等的。然后针对 ClickHouse,每间隔 time 时间主动进行 Merge,考虑服务器压力,只 Merge 最近 time * 2 时间段内修改的分区。目前 time 是 5 min。如下图:
05
整个过程主要用到了程序参数解析器 - Apache Commons CLI,一款开源的命令行解析工具。它可以帮助开发者快速构建启动命令,并且帮助你组织命令的参数、以及输出列表等。
06
后续我们会在爱奇艺视频生产平台提供页面化操作,将同步工具产品化,首先与 Hive、HBase、ClickHouse 等打通,自动建表,然后将任务创建、运行、监控状态逻辑通过调度自动化 。通过技术创新去支持和落地新的业务场景,继续推动爱奇艺的数据和产品向着实时化的方向发展。
也许你还想看